Proof Complexity of Pigeonhole Principles

نویسنده

  • Alexander A. Razborov
چکیده

The pigeonhole principle asserts that there is no injective mapping from m pigeons to n holes as long as m > n. It is amazingly simple, expresses one of the most basic primitives in mathematics and Theoretical Computer Science (counting) and, for these reasons, is probably the most extensively studied combinatorial principle. In this survey we try to summarize what is known about its proof complexity, and what we would still like to prove. We also mention some applications of the pigeonhole principle to the study of efficient provability of major open problems in computational complexity, as well as some of its generalizations in the form of general matching principles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More on the relative strength of counting principles

We give exponential size lower bounds for bounded-depth Frege proofs of variants of the bijective (‘onto’) version of the pigeonhole principle, even given additional axiom schemas for modular counting principles. As a consequence we show that for bounded-depth Frege systems the general injective version of the pigeonhole principle is exponentially more powerful than its bijective version. Furth...

متن کامل

Resolution Proofs of Generalized Pigeonhole Principles

We extend results of A. Haken to give an exponential lower bound on the size of resolution proofs for propositional formulas encoding a generalized pigeonhole principle. These propositional formulas express the fact that there is no one-one mapping from c ·n objects to n objects when c > 1. As a corollary, resolution proof systems do not p -simulate constant formula depth Frege proof systems.

متن کامل

$P \ne NP$, propositional proof complexity, and resolution lower bounds for the weak pigeonhole principle

Recent results established exponential lower bounds for the length of any Resolution proof for the weak pigeonhole principle. More formally, it was proved that any Resolution proof for the weak pigeonhole principle, with n holes and any number of pigeons, is of length Ω(2n ǫ ), (for a constant ǫ = 1/3). One corollary is that certain propositional formulations of the statement P 6= NP do not hav...

متن کامل

P != NP, propositional proof complexity, and resolution lower bounds for the weak pigeonhole principle

Recent results established exponential lower bounds for the length of any Resolution proof for the weak pigeonhole principle. More formally, it was proved that any Resolution proof for the weak pigeonhole principle, with n holes and any number of pigeons, is of length fl(2 ), (for a constant e = 1/3). One corollary is that certain propositional formulations of the statement P / NP do not have s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001